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Superfield formulation of OSp(l,4) supersymmetry 

E A Ivanov and A S Sorini 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, 
USSR 

Received 24 April 1979 

Abstract. A self-contained superfield approach to global supersymmetry in anti-de Sitter 
space (OSp(1,4)) is developed. General transformation laws for OSp(1,4) superfields are 
established, and all basic elements of the OSp(l,4)-covariant formalism, such as covariant 
superfield derivatives, invariant integration measures over the superspace OSp(1,4)/0( 1,3) 
in both the real and shifted bases, relations between different parametrisations of super- 
space, etc., are given explicitly. We also analyse the reducibility questions, focusing in 
particular on the structure of chiral representations of OSp(1,4). The simplest linear 
OSp( 1,4)-invariant models are constructed: the OSp(l,4) analogue of the Wess-Zumino 
model and OSp(1,4) extension of the Yang-Mills theory. The first model, together with the 
spontaneous breaking of OSp(1,4), exhibits an effect of the spontaneous violation of P and 
CP parities with the strength related to the anti-de Sitter radius. We discuss the relation of 
the proposed approach to supergravity. 

1. Introduction 

At the present time a good deal of attention is being paid to the orthosymplectic 
supergroup OSp(1,4), the minimal extension of the group 0(2,3) (- Sp(4)) by Majorana 
spinor generators (Keck 1975, Deser and Zumino 1977, Zumino 1977, MacDowell and 
Mansouri 1977, Mansouri 1977, Chamseddine 1977, 1978, Giirsey and Marchildon 
1978a, b, Ivanov and Sorin 1979a,b). 

Obvious indications that this supergroup has strong relevance to the dynamics of 
supersymmetric theories exist. For instance, Deser and Zumino (1977) have argued 
that spontaneously broken supergravity should be constructed as a theory of the 
spontaneously broken local OSp( 1,4) symmetry (OSp(N,4) for the O ( N )  extended 
supergravity). With such a construction, it becomes possible to remove the unwanted 
cosmological term arising due to the super-Higgs effect (through cancellation with a 
similar term coming from the pure gauge supergravity Lagrangian) and, simul- 
taneously, to adjust the reasonable order of the mass splitting between bosons and 
fermions. An analogous approach to spontaneously broken supergravity was 
developed on the basis of the vierbein formulation of OSp( 1,4)symmetry (MacDowell 
and Mansouri 1977, Mansouri 1977, Chamseddine 1977, 1978, Giirsey and Marchil- 
don 1978a, b). 

Additional evidence in favour of the significance of OSp(1,4) is associated with its 
role as a subgroup in the Wess-Zumino (Wess and Zumino 1974a, b) conformal 
supergroup. In fact, the conformal supergroup is a closure of two of its different graded 
subgroups OSp(1,4) with the common 0(2,3)  subgroup (Ivanov and Sorin 1979a). We 
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have shown (in the same paper) that one of these OSp(1,4) groups is the stability group 
of classical instanton-like solutions of the simplest superconformal-invariant theory, 
the massless Wess-Zumino model, i.e. it plays there the same role as the group 0(2 ,3)  in 
the massless 44 theory (Fubini 1976). The other OSp(1,4) is spontaneously broken on 
these solutions to 0(2,3)  symmetry. By analogy, the OSp(1,4) structure of spon- 
taneously broken supergravity may be thought to emerge via a similar mechanism 
(Ivanov and Sorin 1979a,b). Note also that the Euclidean analogue of OSp(1,4), the 
extension of the group O(5)  by Dirac spinor generators, may happen to be the stability 
group of generalised bosonic-fermionic instantons in Euclidean supersymmetric gauge 
theories (like O(5) in the usual Yang-Mills case (Jackiw and Rebbi 1976)). 

Taking all of this into account, it seems of real importance to construct and analyse 
theories with global OSp( 1,4) invariance, i.e. supersymmetric theories in anti-de Sitter 
space -0(2,3)/0(1,3).  The first non-trivial theory of this type, nonlinear realisation of 
the OSp(1,4) symmetry, has recently been considered by Zumino (1977). He has 
found, in particular, that the relevant Goldstone fermion possesses a mass which is twice 
the inverse radius of anti-de Sitter space. This result was reproduced in another context 
in our paper (Ivanov and Sorin 1979b) where the ordinary massless Wess-Zumino 
model was recognised as the simplest linear v model of spontaneously broken con- 
formal and OSp(1,4) supersymmetries. In the same paper, we constructed the OSp(1,4) 
analogue of the massive Wess-Zumino model and studied its vacuum structure. 
However, the methods we used to obtain the corresponding Lagrangians were, to a 
great extent, heuristic. It is desirable to have general algorithms for constructing 
models with a linear realisation of OSp(1,4) analogous to those employed in the usual 
supersymmetry. 

The most adequate and elegant formulation of conventional linear supersymmetric 
theories is achieved using the superfield concept (Salam and Strathdee 1975). The 
present paper is devoted to the description of a consistent superfield approach to 
OSp(1,4) supersymmetry. 

The supergroup OSp(1,4) can be realised naturally in the superspace 
-0Sp(1,4)/0(1,3), the spinorial extension of anti-de Sitter space -0(2,3)/0(1,3).  
The first to consider such a realisation was Keck (1975). He studied the transformation 
properties of a general scalar OSp( 1,4) superfield and reduced it to irreducible pieces. 
However, it was still not clear how to construct OSp( 1,4) invariants from superfields and 
hence how to set up non-trivial Lagrangian densities. We give explicitly all elements 
relevant to the construction of OSp( 1,4)-invariant Lagrangians of arbitrary structure: 
covariant derivatives of superfields with any external Lorentz index, invariant measures 
of integration over superspace, relations between different parametrisations of super- 
space, etc. 

The paper is organised as follows. In § 2, we describe the OSp(l,4)-covariant 
superfield technique in the symmetrically parametrised superspace by proceeding from 
the general theory of group realisations in homogeneous spaces. In § 3, we pass to the 
non-symmetric parametrisation and study representations of OSp( 1,4) in the left- and 
right-handed chiral superspaces. Section 4 contains examples of simplest OSp( 1,4)- 
invariant models constructed using the general recipes of previous sections. We present 
the OSp(1,4) analogue of the Wess-Zumino model and the OSp(l,4)-invariant exten- 
sion of the Yang-Mills theory and examine their properties. In appendices 1 , 2 , 3  and 4 
some technical questions are considered and a number of useful formulae are quoted. 
The relation with supergravity is briefly explained in the conclusion and, as short 
comments, throughout the text. 
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2. OSp(1,4) superfields in a symmetric basis 

2.1. The superalgebra OSp(1,4) 

The structure relations of OSp(1,4) can be taken as (Keck 1975, Zumino 1977)i  

[M,,, MA,] = i(q,pMuA + mM,p - q , ~ M v p  - v,pM,~), 

[MFY, RA 1 = i(quAR~ - q f i h R v 1  
( 2 . 1 ~ )  

[R,, R,] = -im*M,,,, 

(2 . lb)  

Even generators R ,  and M,, form the algebra of the group 0(2,3),  M,, being the 
Lorentz subgroup generators. The odd generator Q has the transformation properties 
of the 0(2,3) spinor and obeys the Majorana condition Q = COT. We have introduced 
explicitly into (2.1) the dimensional parameter of contraction m([m] = L-') to have at 
each step a clear correspondence with the standard supersymmetry whose algebra 
results from (2.1) in the limit m + 0. 

In what follows (0 3) we shall need a more detailed knowledge of the structure of the 
superalgebra (2.1). It can be represented as a closure of two complex-conjugated 
superalgebras S ,  CC (M,,, Q, = ;( 1 f i ys)Q) (we call them, respectively, the left- and 
right-handed Lorentz superalgebras): 

[MeV, QJ = -bkLYQ+, {Q*, 6,) = ~ m a w " " ~ ( l *  iydM,,, (2.2) 

{Q*, 6,) = $"'(l i ys)R,. (2.3) 

In this sense OSp(1,4) resembles the conformal superalgebra, which is a closure of two 
of its supersubalgebras OSp( 1,4) intersecting over the algebra of 0(2,3)  and shifted 
with respect to each other by the y5 rotation with angle 7 (Ivanov and Sorin 1979a). 
Note that OSp(1,4) is not the only possible closure of S, and S-: taking the cross 
anticommutator of their spinor charges equal to zero one obtains a superalgebra 
OSp(l,2c), a minimal enlargement of the Lorentz group algebra by Majorana genera- 
tors. 

2.2. Covariant methods in anti-de Sitter space 

Since 0 ( 2 , 3 )  is the group of motions of anti-de Sitter space (Giirsey 1964, Hawking and 
Ellis 1973) its spinorial extension OSp( 1,4) determines the simplest possible super- 
symmetry in this space. Like its Minkowski counterpart, OSp(1,4) symmetry admits a 
natural representation in a superspace x,, 8, but with anti-de Sitter space as the even 
subspace (Keck 1975, Zumino 1977). Clearly, to construct the OSp( 1,4)-covariant 
formalism in superspace one needs, first of all, the basic relations of the 0(2,3)- 
covariant formalism in anti-de Sitter space. To our knowledge, the systematic deriva- 
tion of these relations from a uniform group-theoretic point of view has not yet been 
given in the literature. For this reason, and also bearing in mind that the superspace 
case will be treated in an analogous way, we find it useful to present such a derivation in 
detail here. 

t Our conventions on the metric and the Q matrices coincide with those of Salam and Strathdee (1975). 
Indices p, Y, p, A refer to Lorentz vectors and a, p ,  y, 6 to spinors. Summation over repeated indices is 
everywhere implied. 
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Anti-de Sitter space is a space of constant negative curvature homeomorphic to the 
homogeneous (coset) space 0(2,3) /0(1,3) .  Because of this, we can take advantage of 
general constructive methods of group realisations in homogeneous spaces (see, e.g., 
Helgason (1962) and, in the particle physics context, Coleman et a1 (1969), Callan et a1 
(1969), Volkov (1973) and Ogievetsky (1974)). 

The one-to-one correspondence between the coset space 0(2,3)/0(1,3) and anti-de 
Sitter space means that coordinates of the latter can be identified with parameters of left 
cosets of the group 0(2,3)  over its subgroup 0(1,3).  To different parametrisations of 
cosets there correspond equivalent systems of curvilinear coordinates in anti-de Sitter 
space. Of common use is the exponential parametrisation 

exp(iz,”R,)L 

where L is the set of the Lorentz group elements. However, we find it more convenient 
to deal with the coordinates x, related to 2 ,  by 

def 1 tan zmz 
x, = z , - ,  mz g(x) = exp(iz*(x)R,) (2.4) 

with z = (z”z,)1’2.t This choice is advantageous as it diagonalises the metric of anti-de 
Sitter space and makes the appearance of the covariant derivatives of fields most simple. 
Note that the x, are stereographic projections of the Cartesian coordinates on a 
four-dimensional hypersphere with radius 1 / m  in a five-dimensional pseudo-Eucli- 
dean space with metric (T ,~ ,  l)$. 

The group 0(2,3)  can be realised in the space 0(2,3) /0(1,3)  as left multiplications 
of cosets: 

Shifts with g o €  0(1,3)  induce on x, usual Lorentz transformations which form a 
little (stability or structure) subgroup of realisation (2.5). Shifts with go = exp(iA @I?,) 
result in nonlinear transformations 

(2.6) 2 2  
~ R X ,  =+[A, +2m2(Ax)x,  - m x A,]. 

Transformation properties of Lorentz irreducible fields q5k (x) with respect to realisation 
(2.5) can be defined naturally following the induced representation method 

4; (x’) = [exp(tiu (go, X)J,~)I~FMX) (2.7) 
where ( J , ” ) k l  are matrices representing generators of the little group 0(1,3) on fields 
& ( x ) .  For the infinitesimal 0(2,3) translations (2.6) the functions u’I”(A, x)  are given 
by 

U f i u ( A ,  x)  = m2(A ’*x - A ”x,) = 4(d/*SRx - ~ ” S R X  ”). (2.8) 

At this point, one essential remark should be made. In so far as the subgroup 0(1,3) 
of 0(2,3) is identified with the physical Lorentz group the law (2.7) is the most general 

C A similar parametrisation of cosets 0(2 ,3) /0(1 ,3)  has also been used by Giirsey and Marchildon (1978a, b). 
However, their treatment of 0(2 ,3)  (and OSp(1,4)) differs essentially from ours. Together with MacDowell 
and Mansouri (1977) and Chamseddine (1977, 1978) they regard these groups as purely gauge, i.e. as acting 
in some internal tangent space. In such a treatment parameters of cosets are fields over usual Minkowski 
space-time, which is not affected by group transformations at all. 
$ These coordinates also determine a particular parametrisation of the coset space 0(2,3) /0(1,3) .  Their 
explicit relation to z+ was given by Keck (1975) and Zumino (1977). 
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0(2,3)  transformation law for fields defined over anti-de Sitter space (up to a change of 
coordinates). For instance, given some linear 0(2,3)  multiplet @(x) such that 
@(x) - @’(x’) = g@(x) where g is an appropriate matrix representation of 0 ( 2 , 3 ) ,  
it can be decomposed into the direct sum of Lorentz irreducible fields withLrans- 
formation properties (2.7) by means of the equivalence replacement @(x) + @(x) = 
exp(-izF(x)I?,)@(x) where I?, are matrices of generators R, in the representation g .  
This phenomenon is a particular manifestation of the relationship between linear and 
nonlinear group realisations (general theorems are given by Coleman etal l969) .  As an 
important example, we write down explicitly the equivalency transformation by which 
some 0(2,3)  spinor $: (x) (I?, = kmy,) is expressed in terms of components $,(x) 
comprising a Lorentz spinor 

cC/k(x) = [ e ~ p ( ~ i m t ~ ( x ) y , ) ] , P $ ~ ( x )  = [ k ~ ( x ) ] ” ~ ( l  +im~’y,)fcC/~(x)= A ~ ( X ) $ ~ ( X )  (2.9) 
with 

O(2.3) 

a (x )=2 / (1+m2x2) .  (2.10) 

The transformation (2.9) has been used earlier by Dirac (1935) and Zumino (1977), 
without, however, explanation of its group meaning. 

Note also that we might choose 0(2 ,3)  transformations to coincide with those of the 
0(2,3)  subgroup of the usual conformal group (with identification R, = ;(P, - m2K,)). 
Again, an equivalence mapping which brings them into the standard form (2.7) exists 
(see appendix 3). 

Let us define now the covariant differentials and derivatives of fields C$k(X). This can 
be done quite simply using the method of Cartan differential forms. In our case, these 
forms are found from the decomposition 

g-’(x) dg(x) = ips”(x, dx)R, +$vPp(x, dx)M,, 

= ia (x)  dx“Rv-im2u(x)x* dxPM,,. (2.11) 

The form ps” = a (x )  dx” transforms homogeneously under shifts (2.5) as the Lorentz 
four-vector, with parameters ugy(go, x), and is thus the covariant differential 
of the coordinate xu. The inhomogeneously transforming form vPp = 
-m2u(x)(x@ dxP -xp  dx”)  (the Lorentz connection) enters into the covariant 
differentials of fields 4k(x): 

V 4 k  ( X )  = ddk (X )  + kivrp (X, dx)(J,,)krdr(X) (2.12) 

which transform as (,hk(X) themselves. The covariant derivatives Vp& (x) are naturally 
defined as coefficients of the expansion of V & ( X )  in forms p ! :  

V d k b )  =pf(X, dx)Vp4k(x), (2.13) 

whence 

V p 4 k  (x) = a - ‘ ( X ) a p d k  ( X )  - im2X (J, , )kdi(X).  (2.14) 

It is worth noting the useful formulat 

[v,, VA] = -im2JpA, (2.15) 

t Hereafter we mean that the matrix part of each covariant derivative in operators of the type V, V,, . . . V, 
acts on all free Lorentz indices to the right of it, including vector indices of covariant derivatives. 
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which can be deduced either directly or using the following general method. One 
should evaluate the commutator of two independent covariant differentials (2.12), 
extract from both sides of the obtained identity independent products of forms pcL,p, 
taking into account the Maurer-Cartan structure equations for pcL,p, vcL,p,, and, finally, 
identify coefficients of these products (the structure equations for anti-de Sitter space 
are readily extracted from more general ones for the superspace OSp(1,4)/0(1,3) 
which are given in § 2.3). Relations (2.15) are formally similar to the commutators 
between generators R,. The essential difference is that only matrix, vierbein parts of 
Lorentz generators occur in the right-hand side of (2.15), in contrast to the whole MFV 
in ( 2 . 1 ~ ) .  This fact can easily be understood from the following consideration: as the 
LHS of (2.15) is manifestly 0(2,3)-covariant the RHS must be of the same type (J,&k (x) 
is again a 0(2,3)-covariant field while M,,&(x) is not). 

Obtained formulae allow us to construct all objects relevant to the geometry of 
anti-de Sitter space. The contraction of two forms pL,” gives the invariant interval 

and the outer product of four forms FL,” the invariant volume element 

(2.16) 

(2.17) 

One immediately observes that g;” (x) = a 2 ( x ) ~ , ,  plays the role of anti-de Sitter metric, 
a ( x ) ~ , ~  being an appropriate vierbein. The curvature tensor can be defined now in the 
standard fashion, As a matter of fact, its components are given already by equation 
(2.15): 

taking into account that (2.14) and (2.15) are particular cases of well-known general 
covariance formulae (corresponding to the above special choice of vierbein). 

In this connection, it is instructive to look at the group structure given by equations 
(2.6) and (2.7) from the general relativity standpoint. As is known, the invariance group 
of Einstein’s theory in the vierbein interpretation is the semi-direct product of two 
infinite-parameter groups: the general covariance group (acting only on x, and world 
tensor indices) and the gauge (vierbein) Lorentz group which acts in a tangent space and 
does not affect the space-time coordinates. Both of them include 0(1,3)  subgroups, the 
physical Lorentz group being identified with the diagonal in the direct product of these 
0(1,3).  By construction it does not distinguish world and vierbein indices. Clearly, 
transformations (2.6) together with Lorentz rotations of x, form a subgroup 0(2,3)  in 
the general covariance group. At the same time, it is not hard to see that the vierbein 
group itself does not contain a 0(2,3)-subgroup. But one is still able to find x- 
dependent vierbein transformations which, being combined with shifts (2.6), close to 
form 0(2,3)  including as O( 1,3)-subgroup the physical Lorentz group. The realisation 
thus obtained is just that one given by the law (2.7). In other words, the realisation of 
0(2,3) constructed here by the general procedure can also be regained by identifying 
certain parameters of the general covariance group with those from the gauge vierbein 
Lorentz group. 

In such an interpretation, Lorentz indices of fields with the standard transformation 
law (2.7) should be regarded as coming from the tangent space because the & ( x )  
undergo in them only Lorentz rotations (x-dependent in the case of 0(2,3)/0(1,3) 
transformations). It is interesting that for fields with tensor indices equivalent forms of 



Superfield formulation of OSp( 1,4)  supersymmetry 1165 

the 0(2,3)-transformation are also possible which coincide in appearance with trans- 
formation rules of world tensors in general relativity. More specifically, attaching to 
some vector index the factor a ( x )  (vierbein) or a - ' ( x )  (inverse vierbein) one obtains a 
field which transforms with respect to this index as the contra- or covariant world vector 
(with aRx ,  from equation (2.6)). The equivalence field redefinition of this kind is a 
particular case of the generalised Weyl transformation (A3.1) corresponding to certain 
values of the weight number n therein. 

To conclude, having expressions for the covariant derivatives of the fields q b k ( X )  and 
for the 0(2,3)-invariant volume element (which is the measure of integration over the 
space 0 (2 ,3 ) /0 (  1,3)) we can construct 0(2,3)-invariant Lagrangian densities of any 
desirable structure in q b k ( X ) .  Also, the problem of reduction of q b k ( X )  to 0(2,3)- 
irreducible pieces can be solved (by representing two Casimir operators of 0(2,3)  in 
terms of covariant derivatives (2.14) and proceeding further like Grensing (1977) in his 
analysis of O(1,4)-de Sitter fields). 

As m + 0 ,  all the expressions obtained reduce to their trivial Minkowski analogues 
(within our definition of anti-de Sitter coordinate, the complete correspondence with 
Minkowski space arises upon rescaling x,  + i x , ) .  

2.3. Extension to the superspace OSp(1,4)/0(1,3) 

To develop the covariant superfield technique for OSp( 1,4)-symmetry, we shall follow, 
as before, general recipes of the theory of group realisations in coset spaces and 
represent OSp(1,4) by left shifts in the superspace OSp(1,4)/0(1,3). For cosets of 
OSp(1,4) over the group 0(1,3)  we take the parametrisation 

G(x, e )  = 0(2 ,3) /0(1 ,3) .  OSp(1,4)/0(2,3) = g ( x )  exp[i(l -$m&9)&2] (2.18) 

where 8, are the Grassmann coordinates associated with the generator Q, and 
comprising a Majorana spinor. The parametrisation (2.18) differs from that adopted by 
Keck (1975) and Zumino (1977), besides the different choice of the coordinate system 
in the space 0(2,3) /0(1,3) ,  by the opposite arrangement of even and odd factors. We 
adhere to this sequence in order that, under the left shifts belonging to the subgroup 
0(2,3),  the coordinates 8, transform according to the induced representation law (2.7), 
i.e. like a Lorentz spinor. With this choice, different &monomials do not mix under 
8(2,3)-transformations, and as a consequence, components of OSp( 1,4) superfields 
have the uniform transformation properties (2.7) in all their Lorentz indices. At the 
same time, making use of the parametrisation by Keck (1975) and Zumino (1977), the 
spinor coordinate (denoted here by 0') behaves like an 0(2,3)-spinor, i.e. it transforms 
under 0(2,3)-translations as Ses = &mApyp@. For this reason, components of cor- 
responding superfields, in indices associated with &monomials, form linear multiplets 
of 0(2,3), which seems to us less convenient because of the lack both of uniformity and 
explicit correspondence with the ordinary supersymmetry. The connection of our 
coordinates x,, 6, with those of Keck (1975) and Zumino (1977) is given by equation 
(2.4) and by the formula of the type (2.9), 

e:, = A!(x)ep(1 -5mib). (2.19) 

An additional canonical redefinition of the Grassmann coordinate with the help of the 
&dependent factor (1 - fm&)  in (2.18) is made to simplify subsequent formulae (it does 
not alter the 0(2,3)-properties of 0,). 
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Transformation properties of the superspace OSp( 1 ,4 ) /0 (  1,3) and superfields 
@k(X, 0)  defined over it ( k  is the Lorentz index) with respect to an arbitrary OSp(1,4)- 
transformation are specified by the formulae (compare with (2.5) and (2.7)) 

G(x, 0 ) +  GoG(x, 0 )  = G(x’, 0’) exp($Wp”(Go, X, 0)M,,) ,  

@k(X, 0)  + @k(X’, 0’) = [exp(iiW’*”(Go, X, O)J,v)]kl@~(& 61, 

(2.20) 

(2.21) 

with ( J N v ) k l  again being the matrix realisation of generators MFY. 
Clearly, for Go = go E 0(2,3)  transformations (2.20) and (2.21) reduce to (2.5) and 

(2.7). In particular, W@’”(go, x, 0)  = uFv(go, x),  and generators M,, and RA in the 
realisation on superfields a k ( x ,  0)  are simply 

M,, = i(x,d, -xd , )  +%T,, alae+ JKV,  

RA =i[&l-m2x2)81 + m 2 ~ A ~ ” ] ~ , , + ~ m 2 x Y & r A Y  a /a~-m2xUJ, , .  

Much more involved is the structure of the odd OSp( 1,4)-transformations generated 
by shifts with G = e”‘. Making use of the commutation relations (2.1) and formulae of 
Zumino (1977), through rather cumbersome calculations we have found that the 
generators Q, realised on superfields @k(X, 0)  are of the form 

Q, = (1 -tm&9)A!(x)[i{(l +tm&3)82; + m0$’-$m(yu0) , [e (y ,  - m ~ ~ a , , ) ] ~ }  a l a e ’  

(2.22) 

-ia-l(x)(yue),av +iim[(2mxVy, + av,)e~,~”+n (2.23) 

where the matrix h f ( x )  and function a (x )  are introduced by equations (2.9) and (2.10). 
The differential parts of generators (2.22) and (2.23) transform arguments x, and 0,, 
while the matrix ones change the superfield form via the Lorentz rotation with x- and 
&dependent parameters. In the contraction limit, (2.22) and (2.23) convert into the 
generators of usual supersymmetry (with additional rescaling x, + ix,). 

We now turn to the construction of covariants of the realisation given by trans- 
formation laws (2.20) and (2.21). The relevant Cartan forms are introduced by the 
relation which is a direct extension of the decomposition (2.1 1): 

G-’(x, 0)  d G  (x, 0)  = i?(x, 0, dx, dO)Q+ip’(xx, 0, dx, d0)R, +:ivpA(x, 0, dx, dO)MpA. 
(2.24) 

The forms p”,  f a  are easily verified to transform under shifts (2.20) according to the 
general law (2.21), independently of each other. Thus they have the meaning of 
covariant differentials of the coordinates x, and 0,. The inhomogeneously transform- 
ing form vpA  is nothing but the connection over the Lorentz group (which is the structure 
group of the present realisation). This form determines the covariant differentials of the 
superfields: 

a@k(X, @)=d@k(X, 6)+$vpA(J,A)ki@l(X, e). (2.25) 

Inhomogeneity of its transformation is just such as to compensate the non-covariant 
term which arises from dak(x ,  0)  when Ok(x, 0)  undergoes the transformation (2.21). 
As a result, 9 Q k ( x ,  0)  transforms like @ k ( &  0)  itself. 

Explicitly, the forms ?’, p ”, v p A  are as follows: 

?@ = (1 -im&l)[[de”{[l +$gm2(t%)2]8E -imO,ap}-&ma(x) dx,[8(yg -mx,a“~)]IP] 

p y  = a ( x )  d x U + ~ i ( 1 - ~ m 8 8 ) f y ” 0 ,  (2.26) 

vpA = i im(1 - imek)~[c+” + m(xpyA -xAyP)]o -m2(xppA -xApP) .  
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In constructing the covariant derivatives of superfields we shall follow closely the 
pure anti-de Sitter case, namely, we extract from g@k(X, 8) (2.25) the covariant 
differentials of the coordinates x,, e,, i.e. the forms pLy ,  P, and identify with the 
covariant derivatives, respectively vector and spinor, the coefficients of these forms: 

g@k(x, 8)=pLy6,@k(x) 8)+fa6,@k(x,  8). (2.27) 

The objects thus defined are manifestly OSp( 1,4)-covariant by construction. With the 
explicit expressions for Cartan forms (2.26), definition (2.27) implies 

y6, = a-’(x)d,, +&mJ(y,, - mx@u,,) a/dJ-im2x’”J,,, (2.28) 

6, = (1 - im&9){[( 1 + tm&9)8! +im8,8P] alaeP - $(y”O),$, - tm (u””e),J,,}. 
(2.29) 

As m + 0, these operators contract into the usual vector and spinor covariant deriva- 
tives of ‘flat’ supersymmetry. Let us point out that dx, and d, enter into the forms 
(2.26) and covariant derivatives (2.28) and (2.29) only through their 0(2,3)-counter- 
parts pLp and V,, thus ensuring correct 0(2,3)-properties for (2.26), (2.28) and (2.29). 
Note also that the pieces of the forms (2.26) independent of x, and dx, coincide with 
the Cartan forms for the realisation of OSp( 1,4) in the purely Grassmannian coset space 
oSp(1,4)/0(2,3).  

Though the structure of covariant derivatives (2.28) and (2.29) is rather complicated 
their commutator algebra turns out, beyond expectation, almost as simple as in the case 
of usual supersymmetry : 

A A  

[V,, V,] = -im2J,,, 

{go, $ 8 )  = -4m(agvC)apJ,v + (l/i)(r”C)aP*,, 

[t,, & I  = ( ~ / 2 i ) ( y , 6 ~ ,  

(2.30) 

multiplication of covariant derivatives being understood here in the sense explained in 
the footnote to formula (2.15). To learn what these (anti) commutators are, we have 
taken advantage of the general method mentioned after equation (2.15) (the straight- 
forward computation of them is also possible, but it involves a lot of tedious labour). In 
application to the present case, that method consists of evaluating an antisymmetrised 
second-order covariant differential of Q k  (x, 8) and equating afterwards coefficients of 
independent products of the forms p ’, 7, on both sides of the resulting identity. This 
procedure essentially exploits the Maurer-Cartan structure equations for the super- 
space OSp( 1 ,4) /0(  1,3): 

927(d1) -91f(d2) + (m/2 i ) [ f (d1 ) r”~~(d2)  - f ( d 2 ) ~ ’ ~ ~ ( d l ) l  = 0, 

(2.31) 

-m2[pp(dl)pA(d2) - p p ( d 2 ) p A ( d ~ ) ] - i m 7 ( d l ) u p h ~ ( d 2 )  = 0, 

which are derived in appendix 4. 
It follows from (2.30) that, in contrast to the case of ordinary (‘flat’) supersymmetry, 

OSp(l,4)-covariant derivatives $,, 6, do not generate the algebra isomorphic to the 
initial one (2.1). Indeed, relations (2.30), like their 0(2,3)-counterparts (2.15) contain 
only tangent-space pieces of Lorentz generators. Besides, relative signs between 
different structures on the right-hand side of (2.30) are somewhat distinguished from 
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those appearing in (2.1). Strictly speaking, relations (2.30) (as well as (2.15)) should not 
be referred to as introducing any algebra in its conventional meaning because (anti) 
commutators between covariant derivatives are defined in (2.30) quite differently from 
those between infinitesimal group generatorst (see the footnote to equation (2.15)). 
Rather, equations (2.30) have to be regarded as an equivalent form of the structure 
equations (2.31). If, nevertheless, one attempts to treat (2.28) and (2.29) as generators 
of certain superfield transformations and begins to commute (anticommute) them in the 
usual way, one immediately observes that they do not form any closed superalgebra 
(even together with OSp(l,4)-generators (2.22), (2.23)) and it is not clear to which more 
extensive (finite-dimensional) supera9ebra they could pertain. Note that (anti) com- 
mutators (in the usual sense) of $,, 9“ with OSp(l,4)-generators are again the same 
objects, but Lorentz rotated according to the general rule (2.21). For instance, 

In this way, OSp(l,4)-covariance of $&, 6, displays itself at the commutator level. 
Recall that the covariant spinor derivative of usual supersymmetry commutes with the 
4-translation generator P, and anticommutes with the spinor generator. It can be 
defined through the Cartan forms method or, alternatively, as the generator of right 
supertranslations. In the OSp( 1,4)-case, only the first approach appears constructive 
because the right action of OSp(1,4) on the cosets OSp(1,4)/0(1,3) does not commute 
with the left one (Keck 1975). Covariant derivatives (2.28) and (2.29) cannot be 
identified certainly with generators of the right OSp( 1,4)-transformations since, as 
pointed out above, their ‘algebra’ is not closed with respect to the operation of usual 
(anti) commuting. 

Now, let us dwell on the question of how to interpret the obtained formulae in the 
context of Super-Riemannian geometry. We introduce the supervierbein E(x,  e) ,  
namely the supermatrix relating the Cartan ‘superform’ wN = ( p  ’, f ” )  to the 
‘superdifferential’ dzM = (dx’, dB”): 

and, respective$, the inverse supervierbein E-’(x, 8 ) ;  then we may rewrite the covari- 
ant derivatives V,, 6, in the parametrisation-independent form in which they combine 
into the single object, 0~p(1,4)-covariant superderivative Q N  = ( E -  )NdM. . . . 
Without giving it explicitly, we point out only that 6, is a particular case of the generally 
covariant superderivative over the superspace with the Lorentz group as the structure 
group (for the general definition of such objects see e.g. Wess (1978)). This fact is quite 
natural because the superspace OSp(1,4)/0(1,3), as well as the standard one, is a 
special case of the superspace mentioned above. Correspondingly, the realisation 
(2.20), (2.21) can be embedded into the infinite-dimensional supergroup which is given 
on this general superspace and includes arbitrary reparametrisations of x,, 8, together 
with purely gauge x,O-dependent Lorentz rotations of external superfield indices. Thus 
the situation is strongly reminiscent of that taking place for anti-de Sitter space alone. 

1 M c  

t In the usual supersymmetry, due to the absence of vierbein parts in the corresponding covariant derivatives, 
both definitions completely coincide. This is the reason why these derivatives form the true superalgebra (it is 
reproduced, of course, from (2.30) in the contraction limit). 
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In particular, Lorentz indices of all quantities which are subjected to the trans- 
formation rule (2.21) originate from the tangent space (the same is true, of course, for 
the generalised indices of th: ‘superform’ w = ( p  ”, T a )  and the OSp( 1,4)-covariant 
‘superderivative’ qN = ($,GBa)) while indices of coordinates z M  = (x”, e*), their 
differentials dzM = (dx”, de” )  and related indices of direct and inverse supervierbeins 
E,  E-’ behave under shifts (2.20) as the ‘superworld’ ones. Again, in close parallel with 
the 0(2,3)-case, it should be realised that (2.21) is the most general OSp(1,4)- 
transformation law for superfields defined over the superspace OSp(1,4)/0( 1,3) once 
the 0(1,3)-subgroup of OSp(1,4) is supposed to be the physical Lorentz group. All 
other forms of the transformation rule reduce to (2.21) through the equivalence 
superfield redefinition of one kind or another. For instance, we may change OSp(1,4)- 
transformation properties of superfields (Pk(x, e )  by contraction of certain of their 
indices with supervierbeins E,  E-’ (see also appendix 3). 

Disposing of the explicit expressions (2.26) for the Cartan forms, we may readily 
construct all geometrical characteristics of the superspace OSp(1,4)/0( 1,3). As in the 
case of conventional superspace, there exist three independent invariant ‘intervals’: 
p ”pV, FT, FY~T. The components of the curvature and torsion supertensors are extracted 
most easily from the relations (2.30): they are given, respectively, by coefficients of the 
matrix iiJ,,, and covariant derivatives on the RHS of (2.30). In obvious notation 

R Z  = -m2(6L6E --6:6;), R Z  = im(aAPC),p, TZL3 = -i(y,C)ap, 
TE,=-TP =-L’ P m/J. 21m(y,L, 

all other components being zero. Here, all indices refer to the tangent space (in the 
sense indicated above). The same results follow from the consideration of the structure 
equations (2.31). As is expected, in the limit m + 0 there survives only the supertorsion 
component T:P associated with the superspace of ordinary supersymmetry. 

To conclude this section, we calculate the OSp( 1,4)-invariant measure of integra- 
tion over the superspace OSp(1,4)/0(1,3) (the invariant volume element), the know- 
ledge of which is important for constructing OSp( 1,4)-invariant Lagrangians. It is 
defined in a standard manner (Arnowitt er a l  1975) through a superdeterminant 
(Berezinian) of the supervierbein E: 

Ber E = det(A -BD-’C) det D-’. 

Substituting for matrices A, B, C, D their explicit expressions which are straightfor- 
wardly extracted from formulae (2.26), we find 

GBM=d4x d4e Ber E = d 4 x  d4ea4~x)[l+?mBe+zm2(88)2].  (2.33) 

The invariance of the measure (2.33) with respect to the transformations of coordinates 
x, and 8, generated by (2.22) and (2.23) can be verified directly, by using the rules for 
changing variables in the Grassmann integrals (Pakhomov 1974). Its factorisation has 
the clear meaning: the factor d4x a4(x)  is the 0(2,3)-invariant measure of integration 
over the space 0(2,3)/0(1,3),  and the remaining part coincides with the integration 
measure for the superspace OSp(1,4)/0(2,3) invariant with respect to the left action of 
OSp(1,4) in that superspace. Note that the full invariant volume of the space 
OSp(1,4)/0(2,3) obtained by integration over the measure d48[l +?m& +zm2(ee)’] is 
3m2>0,  which is to be compared with the case of the coset space of the standard 
supergroup over the PoincarC group the volume of which is zero. 
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3. Splitting bases in superspace OSp(1,4)/0(1,3) and chiral representations of 
osp(1,4) 

In this section, we pass to the non-symmetric, splitting parametrisation of the super- 
space OSp(1,4)/0(1,3). The basic property of this parametrisation is that the right- and 
left-handed components of the corresponding Grassmann coordinate enter into 
superfield transformation rules in essentially different ways. Just as in the usual 
supersymmetry, the splitting basis appears in many cases more convenient and advan- 
tageous than the symmetric one we dealt with before. 

3.1. Reduction of O S p ( 1 , 4 )  superfields 

We begin with the problem of the reduction of a general OSp(l,4)-superfield 

@ k  (X, 8) = Ak ( X  ) + t@k (X ) + i+&Fk ( X  ) + t& j 8Gk (X ) 

+ t &i 7, y 5 8A (x ) + if% &k ( X  ) -k A( 6%) * D k  (X ) (3.1) 

a @ k ( X ,  8 )  =i(cQ@(x, e))k, (3.2) 

subject to the standard OSp(l,4)-supertranslation law 

where E is an anticommuting constant spinor parameter, and Q, is given by (2.23). 
In the usual supersymmetry, superfields of the type (3.1) are known to be locally 

reducible (Salam and Strathdee 1975). The reduction is effected by imposing covariant 
conditions of first and higher orders in covariant derivatives (Salam and Strathdee 1975, 
Sokatchev 1975). One may attempt to proceed in an analogous way in the OSp(1,4)- 
case. The simplest covariant conditions of first order in the derivatives are now 

(3 .34  181 F ~ Y ~ ) I % & O ( X ,  8 ) ) k  = 0, 

which directly generalise the well-known constraints isolating chiral representations in 
the usual supersymmetry. 

Equations (3.3) are solved most simply when rewritten in component form. 
Examining the system of differential equations thus obtained, we have found that, 
unlike the case of ‘flat’ supersymmetry, it possesses non-trivial solutions (@k # 0) not for 
any superfields but only for those which are transformed by one of the following 
representations of the Lorentz group: 

for condition (3.3+), (3.4,) 

D(o,q) for condition (3.3-), (3.4-) 

D(P,o) 

where D(psq) are matrices of non-unitary finite-dimensional representations of the 
Lorentz group, p and q are positive integers and half-integers (see, e.g., Giirsey 1964). 
The meaning of these constraints will become clear later (0 3.3). 

In the superfields @&(X, 8 )  of the classes (3.4,) the conditions (3.3,) pick out as 
independent components A+k, F * k  and $*k (the latter, in the suppressed spinor index 
associated with O,, is either left- or right-handed depending on the lower sign) and 
express the remaining components in terms of the independent ones: 

Gkk = *iF+k, A$k = *i(V’A*)k, 
(3.5,) 

Xzkk = -i(y”v,$+c)k -2m$+k, D k k  = -(V@V,A,)k - 8mF,k, 
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where V, is the 0(2,3)-covariant derivative defined by (2.14). Note the similarity of 
(3.5,) to the corresponding relations of standard supersymmetry. The analogy 
becomes most striking after going back to the superfield notation. We have checked 
that the solutions (3.5,) admit the compact superfield representation 

k k k  e )  = [ e ~ p ( ~ ~ e ; / ~ r 5 8 6 , ) 1 k l r :  (x, e*), (3.6,) 

T: (x, e,)=A*tk(~)+e;~ik(x)+ie;e,F,k(x), (3.7,) 

where 6, is the OSp(l,4)-covariant vector derivative (2.28) and 8, = i(1 *iys)& 
Relations (3.6) are seen to appear as a direct ‘covariantisation’ (a, +e,) of familiar 
formulae of ‘flat’ supersymmetry which describe the transition to the symmetric basis in 
corresponding ‘truncated’ chiral superfields. These formulae are just the contraction 
limit (m = 0) of (3.6). Without loss of generality, one may put @ + k ( ~ ,  e )  = @‘Tk(x, 0) and 
T: ( x ,  e,) = ( T i  ( x ,  e-))* where the symbol * means involution (complex conjugation 
plus reversion of the order of anticommuting factors)?. 

Thus, we come to the conclusion that superfields from the restricted set (3.4,) 
possess invariant chiral subspaces. Those superfields which are transformed by the 
direct sum of representations D(p,o) 0 D‘O,’) (they can be submitted to the reality 
condition) contain invariant subspaces of both chiralities. The simplest example is a 
real scalar superfield @(x, e ) .  It contains two irreducible conjugated scalar OSp(1,4)- 
multiplets involving, as suggested by the field content of (3.7,), eight real independent 
components. This fact has been established earlier by Keck (1975) through a straight- 
forward analysis of the transformation properties of superfield components. 

Further reduction of superfields (3.1) can be effected by imposing supplementary 
conditions of higher order in covariant derivatives with the structure dictated by the 
structure of Casimir operators of the supergroup OSp( 1,4). The corresponding pro- 
cedure will repeat, in its main steps, that one employed in the usual case (Salam and 
Strathdee 1975, Sokatchev 1975). However, the knowledge of supplementary condi- 
tions and projection operators which single out higher representations of OSp(1,4) is, in 
our opinion, rather of academic interest. Based on analogy with the conventional 
supersymmetry, it should be expected that in OSp( 1,4)-invariant theories of real 
interest (OSp(l,4)-symmetric Yang-Mills theory, OSp( 1,4)-supergravity, etc.) a 
minimal set of relevant fields will be automatically picked out on account of additional 
local invariances (with the elimination of a subset of auxiliary fields afterwards through 
the equations of motion). 

3.2. Chiral realisations of O S p ( 1 , 4 )  

From the existence of the representations (3.6,) it follows that OSp(1,4) can be realised 
on the ‘truncated’ chiral superfields T i  (x, 0,). To find these realisations, we reduce 
(3.6,) in analogy with the case of usual supersymmetry to certain nonlinear shifts of 
superfield arguments. For this purpose, we first unlink the matrix and differential parts 
in the operator exp(Fi&Py5eV,). This can easily be done using the Baker-Hausdorf 
formula and the basic property of Grassmann coordinates ( e ) 5  = 0. We have 

exp(T&YP-y5eG,) = exp(*$m2G-yP-y5~xYJ~,) 

x exp{rb[B;/Py5ea-1(x)ap +2imBe. gy5(1 +iimxy) a/aG]) (3.8) 

f Leaving aside mathematical rigorousness, in what follows we shall occasionally use the term ‘complex 
conjugation’ instead of ’involution’, using the former everywhere to mean just the second operation. 
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where J:p are matrices of generators of the Lorentz group in the representations (3.4,). 
Applying further the general identity e""azq5(z) = q5(ef(z)azz), we rewrite (3.6,) as 

6 , t k ( ~ ,  19)  = [exp(F$im 2 -  ey P Y ~ ~ x ~ J : ~ ) I ~ ~ @ * . ( x ,  e )  = 

where 

(3.10) 

and x," = (xb)*, O R  = Cp'result from (3.10) simply by the change f3+ t, e-. With these 
relations, and making use of the fact that the realisation of OSp(1,4) on superfields 
Qbtk(x, 0) (and on canonically related superfields 6)+k(X, e ) )  is known, we are now in a 
position to deduce the OSp( 1,4)-transformation rules of chiral superfields T:. Trans- 
formation properties of their arguments xb, & and x,", 0," are uniquely determined by 
the properties of x,, 8, owing to the explicit connection (3.10) (and the analogous one 
between x,, 8, and x:, 6 2 ) .  As expected, these pairs of variables form invariant spaces 
with respect to the action of OSp(1,4). Under the Lorentz rotations and 0(2 ,3)  
translations they behave like coordinates x, and ea. Their odd transformations are 
given by 

SQx, L = ia-'(xL)Eh(xL)y,OL, 
(3.11) &e"= Eh(xL)[l -:me"f3"(1 - ~ i m x ~ y p ) ] ~ ( l  +iys) 

" 7 1  (infinitesimal variations of x,, O a  are of the same form up to the replacements L+  R, 
t(l + iy5) + i(1- iy5)). The matrix parts of the OSp(l,4)-transformations of T l  and T i  
can also be shown to depend, respectively, either on xb, 0," or on x:, 0," (at this point, it 
is significant that the genertitors J:l, of the representations (3.4,) do contain projectors 
$(1 f iy5). The concrete structure of OSp(l,4)-generators realised on superfields T: is 
readily extracted from the general expressions for OSp( 1,4)-generators in shifted bases 
given in appendix 1. 

We point out that the shifted bosonic coordinates xL, X" are complex by the 
definition (3.10), and this is quite natural in view of the essentially complex character of 
the realisation (3.11) and its conjugate. But once the transformation properties of the 
component fields in the decomposition of chiral superfields T: (xL, eL), T i  (xR, 19") in 
the variables BL or O R  are specified, it no longer makes any difference whether these 
fields are defined over complex or real manifolds: the group properties of their 
infinitesimal variations remain unchanged. In other words, when symmetrically 
parametrised chiral superfields @)*k (x, e )  in (3.6,) transform according to the uniform 
rule (3.2) the 'truncated' superfields TZ (x, e,) (3.7,) undergo transformations of the 
same form as T l  (xL, 0") and T i  (xR, sR) do but with x, in place of xb, x, and 8+, 8- in 
place of O L ,  O R .  The complexity of 6x, in these transformation laws should not give rise 
to any trouble because, since all field transformations are performed at fixed arguments, 
it does not contradict the reality of x, and reflects merely the unremovable complexity 
of the components of chiral superfields. 

R 
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For illustration, we write down the transformations induced by the supershifts (3.11) 
for the components of scalar chiral superfields T*(x, e*): 

(3.12) 

where p = A - ’ ( x ) E .  The laws (3.12) are the same as those we have found earlier (Ivanov 
and Sorin 1979b). In the contraction limit they become the usual transformation laws 
of scalar multiplets of ‘flat’ supersymmetry. 

3.3. OSp(1,4)-superfields in chiral bases 

To shed more light on the above results and, especially, to clarify the meaning of the 
restrictions (3.4,) (which seem, at first sight, quite mysterious) we adopt here a more 
general point of view on the relation between the real superspace and chiral ones. 
Namely, we shall show that the change of variable (3.10) and its right-handed anahgue 
naturally emerge within the coordinate transformations to the following new complex 
parametrisations of the cosets OSp(1,4)/0(1,3): 

G(x, e)+ GC(xL,  BL, vR)  = OSp(l,4)/S- . S-/0(1,3) = g ( x ’ - )  eleLQ+ elfRQ- (3.13,) 

and 

G(x, e )+  G-(xR,  OR,  vL) = OSp(l,4)/S+ . S+/0(1,3) = g(xR) eleRQ- eliLQ+ , (3.13-) 

where S,a (MFLY,  Q,) are the right- and left-handed Lorentz supergroups defined by 
the structure relations (2.2). Cumbersome calculations utilising the Baker-Hausclorf 
formula, structure relations (2.1)-(2.3), and the Grassmann nature of the coordinates 0, 
indicate that G(x, e )  admits a representation in the two equivalent forms 

G + [ x ~ ( x ,  e ) ,  e L ( x ,  e), q R ( x ,  e ) ]  exp(-iim2&y”y5& ”M,,) 
G-[xR(x, e) ,  e R h ,  e ) ,  q L ( x ,  811 exp(iim By rsBx”Mv,), 

2 -  P (3.144 ~ ( x ,  e )  = { 
where x k ( x ,  e ) ,  &(x, e )  and x , ” ( x ,  e ) ,  e,“(x, e )  are just the functions given by relations 
(3.10) and by those arising from (3.10) after the change e+ tf e-, while q R  and v L  are 
expressed as 

7 ( x ,  e) = e - + i & z 2 i e .  Xye,  = (1 +im?eL)eR+?im e e ( x L y ) e L ,  
2 1  L (3.15) 

In what follows, the bases x L ,  BL, q R  and x R ,  OR,  vL associated with the coset 
parametrisations (3.13,) and (3.13-) will be referred to as left- and right-handed, 
respectively. 

It is clear now that x ; ,  0,“ and x z ,  0,“ are nothing but coordinates of the 
homogeneous spaces OSp(l,4)/S- and OSp(l,4)/S+. The invariance of these super- 
spaces with respect to the realisation of OSp(1,4) as left multiplications of elements G’ 
and G -  is now evident and follows directly from the structure of G’, G - .  It may be 
verified, in particular, that under the multiplication of G’ by Go = elEQ, coordinates x k  
and 6: transform according to the law (3.11). The coordinates v R  and v L  extend the 
invariant subspaces x L ,  OL and x R ,  O R  to the whole superspace OSp(1,4)/0(1,3) and 
have a clear meaning: they label ‘points’ of the purely Grassmannian coset spaces 

R 2 - R  R 

vL(x, e ) = e + + ~ i m 2 e e . x y e _ = ( i + : m e  - R R  e )eL+$im e e ( X R y ) e R .  
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S-/0(1,3) and S+/0(1,3) .  Under the action of OSp(1,4), the variables vR,  v L  trans- 
form according to the left realisations of supergroups S-, S+ on these cosets, with 
constant parameters if an OSp(l,4)-transformation belongs to S- or S, and, otherwise, 
with parameters dependent on xL, BL or x R ,  O R ,  respectively. To illustrate this point we 
trace in detail how OSp(1,4) operates, say on elements G’: 

G ~ G + ( ~ ~ ,  oL, v R )  

= g(xL’) exp(io+8L)S!(Go, xL, dL) exp(iQ-vR) 

= g(xL’) exp(ib+OL’) exp(io-vR’) exp[ti@Y’(Go, xL,  BL, vR)MFYI  

= G+(xL’, B L ,  vR’) exp[:i@Y(Go, xL, OL, vR)MNY] .  (3.16) 

Here S! is an element of the right-handed Lorentz supergroup. If Go E S-, then 
S!(Go, xL, OL) = constant = Go and @?” = @Y’(Go, vR). 

Further in this section we shall deal only with the parametrisation (3.13+), keeping 
in mind that the transition to the basis associated with (3.13-) can be performed at any 
stage by means of the trivial interchanges L 

Transformation properties of superfields in the left-handed basis are defined in 
entire analogy to (2.21): 

R, $(l + iy5) ++ $(1- iy5). 

(3.17) 

where J,, are, as before, matrices of generators of the Lorentz group (not necessarily 
constrained by (3.4)). The transformation law (3.17) corresponds to successive 
inductions: transformations belonging to S- are induced by the subgroup 0(1,3) as a 
little group (under the action of S- superfields transform as in 0(1,3) but with 
parameters which are in general functions of v R  and constant parameters of S-) and the 
remaining OSp( 1,4)-transformations are induced, in turn, by the supergroup S- (the 
constant group parameters in the S- transformation rule are replaced by suitable 
functions both of xL, B L  and riew group parameters determined from the composition 
law (3.16)). The relation of superfields 6 k ( X L ,  BL, vR)  to those in the real basis @ k ( X ,  8 )  
is not so simple as in the usual supersymmetry: 

(3.18) 

Here xL, OL, v R  are assumed to be expressed in terms of x, 8 through (3.10) and (3.15). 
Note the presence of the matrix Lorentz factor in (3.18) (which has already appeared in 
equation (3.9)). It reflects the fact that the coset representatives G ( x ,  0) and 
GC(xL, BL, qR), as seen from the relation (3,14+), are not identical but differ by the 
Lorentz rotation exp(-$m 8 y  y5Bx”M.,). One can be convinced that the intertwining 
property of this matrix, 

exp(&@Y(Go, xL, BL, vR)JFV)  exp(-$im By y58x”J,,) 

2 -  P 6 k [ x L ( x ,  e ) ,  eL(x, e ) ,  vR(x, 011 = [exp(-$im ey Y58x”Jvp)Ik i@l(~,  8 ) .  

2 -  P 

2 -  p 

= exp(-$im 2.- B‘y P y58’x”’J,,) exp(ii W””(Go, x, B)J,,), 

(which is the consistency condition between realisations (3.16) and (2.20)) guarantees 
for superfields 6k defined by (3.18) the transformation rule (3.17). The connection 
(3.18) is, of course, invertible because x, and 8, can always be expressed in terms of xb, 
8f;, ~2 upon inverting equations (3.10) and (3.15). 
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Covariant derivatives of superfields in the left-handed basis can be found either 
starting from their expressions (2.28), (2.29) in the symmetric basis and then perform- 
ing the transformation (3.18) or directly, with the help of the relevant Cartan forms 
(defined by the decomposition of (G+)-’ dG‘ in the OSp( 1,4)-generators). Without 
going into details of the derivation, we quote the result: 

6,” = (1 + i m f R q R )  a/afR-bm(aFuvR)J, , ,  

$: = (1 +imfRvR)[ (1  +ime”e“) a / a e ” - i m ( a F u ~ L ) ~ , y ~ - i ( y Y 7 7 R ) 6 t y ,  
6?,=&m[(l  + i m f R v R ) ( l  + i m 6  0 )(q y y  -mxbe”aE) alae” 

(3.19) 

(3.20) 
-L L -R 

- L L  z + (1 -$m;iRvR)(l --$me e ) ( e  yy - mx,LfRaE) a/a7jRI 

+ ( ~ + z v  77 )(1-ime e )[a-’(xL)a~-im2x,L~E].  (3.21) 

In the contraction limit expressions (3.19)-(3.21) become covariant derivatives of the 
usual supersymmetry in the left-handed chiral basis. The form of the derivative 6: is 
so simple because it is nothing else th-an the covariant derivative of the realisation of S -  
on the coset space S-/0(1,3)=e’Q-‘R. Its covariance with respect to the whole 
supergroup OSp(1,4) follows from the abovementioned fact that the general trans- 
formation law (3.17) may be obtained from the transformation law for superfields 
6k (xL ,  OL, qR) in the supergroup S -  (it corresponds to the choice of @?”(Go E S - ,  vR)) 
by changing constant parameters of S -  to certain functions of coordinates xL and B L  
(these functions are still constants relative to vR-differentiation). 

Now it becomes clear what is the origin of the constraints (3.4,). The condition 
(3.3,) in the splitting parametrisation takes the form 

1 - R  R - L L  

( 6 ? 6 ( x L ,  eL, v R ) ) k  = 0. (3.22,) 
R R R -  Expanding (3.22,) in powers of v R  (77 7 77 - O ) ,  it can be observed that for all 

superfields on which the covariant derivative (3.19) has non-zero matrix part, equation 
(3.22+) permits only the trivial solutions & k  = 0. If the matrix part is zero equation 
(3.22,) goes over to the condition 

(3.23) 

which simply means the absence of qR-dependence. The only class of the Lorentz 
group representations on which the second term of (3.19) vanishes is the class (3.4,). 
For scalar superfields the matrix part is certainly absent, while for superfields with 
indices it is nullified due to the presence of projectors $( 1 + iy5) in the generators of 
representations (3.4,) (and the algebraic property [$(l- iy5)a@”]![$(l + i y & ~ ~ , ] $ =  0). 
The constraints (3.4-) have an analogous interpretation (in the basis ( 3 . 1 3 4 .  

The restrictions (3.4,) can also be understood based on pure group-theoretical 
considerations. So far as xL, B L  and xR, OR are coordinates of the homogeneous spaces 
OSp(l,4)/S- and OSp(l,4)/S+, the superfields dependent only on xL, O L  or on xR, O R  
should transform in OSp( 1,4) according to representations induced by the correspond- 
ing little groups, S -  or s,. In other words, they should form in external indices linear 
multiplets of these supergroups. In appendix 2 we list all linear representations of S -  
and S ,  realised in spaces of finite-dimensional representations of the Lorentz group. AS 
follows from our analysis, some Lorentz irreducible multiplet is an invariant space of 
the supergroup S - ( S , )  only provided it transforms in the Lorentz group according to 

a . *  L 
3 @ k b  , eL, aR) = 0, 
a77 
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one of the representations (3.4,) ((3.4-)) (the generator Q-(Q,) is zero on such a 
multiplet). In all other cases several different Lorentz multiplets are needed for 
composing an irreducible linear multiplet of S- or S,. In the superfield language, this 
effectively emerges as appearance of dependence on qR(qL). 

It is instructive to compare the situation with that taking place in the usual 
supersymmetry, chiral representations of which are induced in complex invariant 
spaces of contracted versions of the supergroups S-, S+, namely S-(m = 0), S+(m = 0). 
In the contraction limit, the RHS of (2.2,) vanishes so that one may set Q-(m =0)  
(Q+(m = 0 ) )  to zero on any given Lorentz multiplet without conflicting with the 
structure relations of S-(m = 0) (S+(m = 0)) (this multiplet should be complex, other- 
wise one arrives at the trivial result Q ( m  = 0) = 0). Thus, any irreducible complex 
multiplet of the Lorentz group can be taken as an invariant space of the supergroup 
S-(m = 0) (S+(m = 0)) and hence as a carrier of a certain representation of the whole 
supergroup realised on cosets over S-(m = 0) or S+(m = 0). This is the reason why in the 
usual supersymmetry chiral superfields with an arbitrary external Lorentz index are 
permissible. 

Note that the purely chiral representations of the conformal superalgebra are also 
restricted to the classes (3.4,) (Aneva et a1 1977). This seems natural in the light of the 
abovementioned property of the conformal superalgebra to be a closure of two 
superalgebras OSp( 1,4) generated by orthogonal combinations of superconformal 
spinor charges and having a common 0(2,3)-subalgebra. Actually, OSp(1,4) plays a 
crucial role in forming linear representations of the conformal superalgebra: in a 
forthcoming paper we show that they can all be induced by a simple procedure in 
invariant spaces of irreducible representations of OSp( 1,4). 

Now we obtain the OSp(l,4)-invariant integration measures in left- and right- 
handed chiral superspaces. Performing the changes of variable (3.10) and (3.15) in the 
measure (2.33) we obtain the invariant measure of the superspace OSp(1,4)/0(1,3) in 
the parametrisation (3.13+): 

(3.24) 

(this measure could also be obtained straightforwardly as the outer product of the 
relevant Cartan forms). The invariant measure in the subspace xL, BL may now be 
found by integrating (3.24) over ( l / m )  d2qR: 

(3.25) 

'The latter coincides with the measure we have derived earlier (Ivanov and Sorin 
1979b). The measure in the superspace xR, O R  follows from (3.25) through involution: 

(3.26) 

We conclude this section with several comments concerning the relation of the 
group structure presented here to the fundamental chiral structure of supergravity 
revealed recently by Ogievetsky and Sokatchev (1977, 1978a, b). 

In the previous section, we have noticed that the realisation of OSp(1,4) in the 
symmetric basis can be embedded into a very general supergroup consisting both of 
arbitrary translations of n, 8 and gauge Lorentz rotations of external superfield indices. 
However, the group really relevant to supergravity is in fact much smaller: it is given by 
a direct product of general coordinate groups in conjugated chiral superspaces xL, 
and xR, O R  (Ogievetsky and Sokatchev 1977, 1978a, b). This group is realised so that 
all local Lorentz rotations appear in the theory not independently but turn out to be 

4 L 2 L 2 R 4  9 M = d  x d 8 d q a ( ~ ~ ) ( l + ~ m ? 8 ~ ) ( 1 + f m f j ~ q ~ )  

9ML = d4xL d20L a4(xL)( l  +$m?O"). 

9MR = d4xR d20R a4(xR)(l  +$me"8"). 



Superfield formulution of O S p (  1,4)  supersymmetry 1177 

induced by transformations of superspace coordinates (like Lorentz rotations in the 
OSp(l,4)-transformation rules (2.21), (3.17)). The real part of xL and x R =  (xL)* is 
identified in the Ogievetsky-Sokatchev approach with the usual space-time coordinate 
while the imaginary part is postulated to be a function of the remaining variables. The 
latter is the axial superfield, the fundamental object in terms of which all geometrical 
characteristics of superspace (supercurvature, supertorsion, etc.) and all transformation 
laws can be expressed. It is interesting to compare our results deduced following a quite 
different procedure with this general picture. 

Our starting point will be the observation that the realisation of OSp(1,4) given by 
the rule (3.11) and its conjugate lie in the abovementioned general coordinate groups 
(just as chiral realisations of usual supersymmetry). With this in mind, we may, step by 
step, establish the correspondence with the Ogievetsky-Sokatchev formalism. Like 
them we might choose coordinates (xL, BL, OR), (xR, OR, eL) to represent left- and 
right-handed splitting bases instead of using for this purpose coordinate sets 
(xL,, BL, vR), (xR, OR, qL). Indeed, equation (3.15) indicates that qR, qLare  canonically 
related to OR, eL. Likewise, we might associate with the symmetric basis the coor- 
dinates 2, = : (xk +xE), e'= B L +  OR instead of x,, 6,. The explicit form of the 
equivalence mapping between these two sets of variables can immediately be found 
with the help of the relations (3.10) and their right-handed counterparts: 

(3.27) 

In terms of 2,, e'e the transitions to the shifted bases are extremely simple and have 
almost the same form as in the usual supersymmetry: 

(3.28) 

So, only the shift of the boson coordinate is essential and unremovable whereas shifts of 
Grassmann variables can be absorbed into the equivalence redefinition of coordinates. 
This agrees with the basic concepts of Ogivetsky and Sokatchevi. It is clear now what 
plays the role of '_axial superfield' for the superspace OSp(1,4)/0(1,3), namely, 
(1/2i)(xk -xE) =$iej/,y5e'a-'(;) = di&,y5Ba-'(x). It should be expected that all 
OSp( 1,4)-covariant objects and OSp( 1,4)-transformation rules found in the present 
paper admit re-expression in terms of this fundamental geometrical characteristic (and 
its derivatives), similarly to the pure anti-de Sitter case, where all relevant quantities can 
be rewritten through u ( x )  and d,a(x). 

Finally, we recall that the group of pure Einstein supergravity is restricted by the 
condition of conservation of volumes of chiral superspaces while the case without any 
restrictions corresponds to Weyl (conformal) supergravity (Ogievetsky and Sokatchev 
1978a, b). The realisation (3.11) and its conjugate certainly do not preserve volume 
elements d4xL d20L and d x d 6 and hence do not belong to the Einstein supergravity 
subgroup. It can be shown, however, that in the Weyl supergravity group there exists 
another infinite-parameter subgroup which preserves the OSp( 1,4)-invariant volume 

4 R 2 R  

t We suspect that coordinates xw,  8, (which are both shifted when transitions to chiral bases are performed) 
correspond to Siegel's formulation of superspace supergravity (see e.g. Siege1 and Gates 1979). This 
formulation seems to be basically equivalent to the Ogievetsky-Sokatchev approach. 
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elements (3.25) and (3.26) instead of the usual ones. This group includes as the ‘flattest’ 
graded subgroup just OSp( 1,4) and therefore seems to be relevant to OSp(1,4)- 
supergravity. 

4. Some OSp(l,4)-invariant models 

We construct now OSp( 1,4)-analogues of the simplest theories with global PoincarC 
supersymmetry: the Wess-Zumino model (Wess and Zumino 1974a, b) and the 
supersymmetric Yang-Mills theory (Ferrara and Zumino 1974, Salam and Strathdee 
1974). 

4.1. The Wess-Zumino model in anti-de Sitter space 

The OSp( 1,4)-invariant superfield action for the self-interacting scalar OSp( 1,4)- 
multiplet with overall mass M and dimensionless coupling constant g can be written as 

+;M[ j 9MLT+*(xL,  e“) + [ 9 M R T P 2 ( x R ,  OR)] 

+ (45/3)g[ [ 9 ? M L T + 3 ( ~ L ,  OL) + I 9MRT3(xR,  OR)].  (4.1) 

The invariant integration measures 9 M ,  9ML and 9 M R  are defined by formulae 
(2.33), (3.25) and (3.26). Chiral superfields in the symmetric basis, a+ and @- = (aL)* 
are related to ‘truncated’ superfields T‘ and T -  = (T’)* as in (3.6,). 

Using the rules for changing variables in Grassmann integrals and the connection 
(3.10) together with its conjugate, we have checked that the second and third pieces in 
(4.1) do not change their form under the replacements x,, x ,  +x,, O L +  e+, B R +  8-. 
Then, integrating (4.1) over de, going to real components A, B, F, G, 

L R  

1 
F, = T ( F * i G ) ,  

1 
A,  = :(A * iB), 

t i2 d 2  

and finally eliminating the auxiliary fields F and G by their equations of motion 

F = - (m + M ) A  -g(A2-B’),  G = ( M  - m ) B  + 2gAB, (4.2) 

we are left with the action which includes only the physical components + ( x ) ,  A ( x ) ,  
B ( x )  and is expressed solely in terms of anti-de Sitter space: 

S = 9Ms[i(VFAV,A +V’”BV,B +i&”V,$) - V,(A, B, $)] (4.3) I 
Here V, and 9 M s  are, respectively, the 0(2,3)-covariant derivative and 0(2,3)-  
invariant integration measure for anti-de Sitter space given by (2.14) and (2.17) (in fact, 
the matrix part of Ow+ makes no contribution to (4.3) because of the Majorana spinor 
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property $(x)y ,$(x)  = 0). The potential VM(A, B, $) has the form 

VM(A, B, $) = :(M + m ) ( M  - 2m)A2 +i(M - m)(M + 2m)B2 +;M&$ 

+:g2(A2 +B2)2 + gMA(A2 +B2)  + g$(A -By5)$. (4.4) 

Expressions (4.3) and (4.4) coincide with those we have obtained earlier by a different 
method (Ivanov and Sorin 1979b). In the contraction limit they reduce to the standard 
Wess-Zumino (1974a, b) action. 

Now we schematically review the main properties of the present model, following 
our work (Ivanov and Sorin 1979b). 

The first thing one observes is that the fermion and boson masses in the potential 
(4.4) have split already at the level of unbroken OSp(l,4)-symmetry, m being a 
parameter of splitting. This is to be compared with the situation in the standard 
Wess-Zumino model where the fermion and both bosons have equal masses. The 
reason why the OSp( 1,4)-symmetry is less restrictive than the usual supersymmetry is 
quite clear: it is the appearance of the new dimensional constant, m, which non-trivially 
enters into the Lagrangians and plays, to a certain extent, the role of a free parameter. 
In view of this, it is not so surprising that, depending on a relation between parameters 
m and M, the model under consideration realises regimes with a different symmetry of 
the ground state, whereas its Minkowski prototype displays only a fully symmetric 
phase. For instance, in the ranges O s M s 2 m  and -4m s M s - 2 m  (m>O fixed) 
VM(A, B, $) has a minimum for the constant solutions 

which gives rise to spontaneous breakdown of OSp(l,4)-supersymmetry to 0(2,3)-  
symmetry. Indeed, 0(2,3)  is the maximal invariance groyp of (4.5). OSp( 1,4)-super- 
translations displace the spinor component (SO$) = (1/42)(F)P # 0, indicating that in 
the sector raised upon the minimum (4.5) $(x) plays the role of Goldstino. Its mass is 
mlL = 2m in complete agreement with the general theorem of Zumino (1977). The 
masses of boson fields shifted to zero vacuum expectation values are real (i.e. ghosts do 
not appear) and are related to mlL by the simple formula 

(4.6) 2 2 2 mA + mB = m,,,, 

An unexpected feature of the present model is the existence of the phase with 
spontaneously broken P- and CP-parities. In the range -2m s M s 0 the potential 
(4.4) attains two absolute minima at the following vacuum expectation values of the 
fields: 

m - M  [(m - ~ ) ( 3 m  + M ) ] ” ~  
(A)=-, ( B )  = * 5 ($) = ( F )  = (G) = 0. (4.7) 

2g 2g 

Upon passing to fields A’,  B‘, $’ which have zero vacuum expectation values and 
diagonalise the mass matrix, there appears in the rearranged potential the P- and 
(simultaneously) CP-violating interaction -&’(B’ +A’y5)$‘, with the constant 
*g[(M’-m)/2M’]”2 where M’ is the physical mass of $’ (2m c M ’ s 4 5 m ) .  
Parameters m, g, M’ may be adjusted so that the constant of CP-violation is of a 
reasonable order of magnitude. Again, all the physical masses are strictly real. A more 
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detailed analysis of the CP-breaking phase will be given elsewhere. Note that 
OSp( 1,4)-symmetry in this sector is not broken as (F,) = 0 there. 

With any other relations between m and M the symmetric phase is realised in the 
model. As expected, it is the only phase which survives in the limit m + 0, M # 0 
corresponding to the usual massive Wess-Zumino model. 

In the special case M = 0 ,  the action (4.1) possesses a wider, superconformal 
symqetry and, in particular, chiral invariance (with the identification Q = 
( l / J 2 ) ( S + m T ) ,  R,  =:(P, -m2K,), where S, T, P, and K, are generators of the 
conformal supergroup normalised as in Ivanov and Sorin (1979a)). The minima of the 
potential VM=o(A, B, 4 )  are placed on the circle of radius Im/gl in the A-B plane, 
solutions (4.5) and (4.7) going into certain points on that circle. The violation of P- and 
CP-parities becomes unobservable as the relevant sector turns out to be related to P- 
and CP-preserving sectors by a chiral transformation of fields. Each minimum is 
invariant under a certain subgroup OSp(1,4) of the conformai supergroup and realises 
the spontaneous breakdown of symmetry with respect to another graded OSp( 1,4)- 
subgroup which has the same 0(2,3)-subgroup but whose odd generator is given by an 
orthogonal combination of superconformal spinor charges (for more details see Ivanov 
and Sorin (2979b)). 

At  M = 0 the action (4.3) exhibits also the generalised Weyl covariance. To be more 
precise, it is brought into the ordinary superfield action of the usual massless Wess- 
Zumino model by the superfield Weyl transformation 

T*(x ,  8,) -+ T*'(x ,  8,) = a ( x ) [ l  +bna(x)g*O+]T*[x,  (a(x)) ' /28,]  (4.8) 

(Ivanov and Sorin 1979b). For physical components the transformation (4.8) is the 
standard Weyl transformation from anti-de Sitter space to Minkowski space: 

A ' ( x )  = a ( x ) A ( x ) ,  B ' ( x )  = a ( x ) B ( x ) ,  +'(XI = a 3 l 2 ( x ) 4 ( x )  (4.9) 

(see e.g. Fronsdal 1975, Domokos 1976). It can straightforwardly be verified that in 
terms of the fields A', B' and 4' the M = 0 limit of the action (4.3) coincides with the 
component action of the massless Wess-Zumino model in Minkowski space. The 
constant solutions giving minima to the potential VM="(A, B, 4 )  transform into x- 
dependent classical solutions of the Fubini (1976) type discussed by Baaklini (1977) and 
Ivanov and Sorin (1979a). Note that (4.9) is a particular case of the transformation to a 
chiral superfield of superconformal weight n defined in appendix 3 (it corresponds to 
n =+I .  

We have confined our study here to purely classical considerations. In principle, one 
may take the present model more seriously and try to allow for quantum loop 
corrections. This can be done using the quantisation schemes for anti-de Sitter space 
suggested by Fronsdal (1975 and references therein) and Avis et a1 (1978). 

4.2. OSp (1,4)-extension of the Yang-Mills theory 

OSp( 1,4)-invariant gauge theories are constructed analogously to the usual super- 
symmetric ones. We prefer to work in the left-handed basis (3.13+). Let 1, be the 
matrices of the generators of some group of internal symmetry G. Introduce the real 
Lie-algebra-valued gauge superfield 

v ( x L ,  oL, T ~ )  = v * ( x L ,  oL, T ~ )  = v ' ( x L ,  eL, T ~ ) I ~  (4.10) 
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and postulate for it the following law of local G-transformations: 

exp(2gV'(xL, OL, qR)) = exp(-iAf(xL, OL, v")) exp(2gV(xL, OL, vR)) exp(iA(xL, OL)) 
(4.11) 

where g is a constant and R,A+ are two conjugated superfunctions with values in the 
same algebra, and subject to the conditions 

& ~ A = & : A + = o  (4.12) 

(6: and $4 are defined by formulae (3.19) and (3.20)). Then the left-handed (with 
respect to the Lorentz index) spinor superfield e-2gV6k e2gv transforms in G as 

(4.13) 

A complication in comparison with the usual supersymmetry_arises only at the stage 
of construction of covariant superfield strengths. The operator &?&? being applied to 
the superfield (4.13) does not produce the covariant quantity because in the OSp(1,4)- 
case it does not annihilate the inhomogeneous term in (4.13). The correct generalisa- 
tion of the standard procedure implies the use of the projection operator 

(4.14) 

which singles out from the left-handed spinor OSp( 1,4)-superfield the pure chiral part 
dependent only on xL and O L  (see appendix 2). As is shown in appendix 2, such a 
superfield divides in general into two pieces each closed under the action of OSp(1,4). 
One of them is a pure chiral superfield, the other a non-chiral superfield, F- and 
A-components in the expansion of which in q R  are related as Fo(xL, O L ) =  
-mA,(xL, 0") (formulae (A2.15), (A2.14)). Making use of the explicit form (3.20) for 
the covariant derivative $4, it can be established that the inhomogeneous term in (4.13) 
is just a superfield of the second type. Therefore the action of the projection operator 
(4.14) on that term gives zerot. As a result, the left-handed chiral spinor superfield 

(4.15) W,, = - 

transforms in G homogeneously, 

+ e2gV+ e - ~ A  e-2gV$L 2gV I4 
+ e e +e--I"& elA. e-2gv$L 

"R "R - (1 /2m) (9+9+  -- 2m) r p 2 . 0 )  = 

[ 2 n / 2,O) e -2 g V& L "R "R 
+ e2gV], = (G+a+ -2m)f  e-2gV&4p e2gv 

w + ~  + e-lAW,, eiA, (4.16) 

and can serve as the covariant strength. In the limit m + 0 it becomes the covariant 
superfield strength of the conventional supersymmetric Yang-Mills theory. 

The invariant action for the gauge superfield is set up in the standard manner, 

S = 7 9ML Tr( W+ W,) + HC, (4.17) 
g ' I  

I 
and in the Wess-Zumino gauge has the form 

S = d4x a 4 ( x )  Tr[-$,,EFu +iih;%,A +ill'], (4.18) 

where 
I 

F,, = V,v, - V , v ,  + ig[v,, v u ] ,  

&,A = V,A + ig[v,, A] .  

(4.19) 

(4.20) 

t. This fact can be verified straightforwardly, using the algebra of covariant derivatives (2.30). 
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The action (4.18) describes the Yang-Mills field U: in anti-de Sitter space minimally 
coupled to the massless Majorana spinor A; belonging to the regular representation of 
the group G. Transformations of OSp( 1,4)-symmetry in the Wess-Zumino gauge are as 
follows: 

(4.21) 

where p is the same function as in (3.12). 

upon the Weyl transformation 

v,(x), A(x), D ( x ) +  v h ( x )  = u ( x ) v , ( x ) ,  A‘(x) = ~ ~ ’ ~ ( x ) A ( x ) ,  D ’ ( x ) =  a 2 ( x ) D ( x )  

We emphasise that the action (4.18) in itself produces no new consequences since 

(4.22) 

it reduces to the ordinary action of the corresponding supersymmetric Yang-Mills 
theory in Minkowski space. This is because the action (4.18) is conformally invariant 
and, hence, Weyl-covariant. Moreover, the component transformations (4.22) can be 
extended to the Weyl superfield transformation which takes the action (4.17) into the 
superfield action of the related gauge theory in the usual superspace (for brevity, we do 
not give it explicitly; it is similar to (4.8)). This reflects the generalised Weyl covariance 
of supersymmetric Yang-Mills theories caused by their superconformal invariance. 

A non-trivial novel theory may be set up, e.g. by coupling the gauge superfield to the 
massive scalar OSp( 1,4)-multiplet belonging to a unitary representation of group G 
(such interactions are introduced in the same way as in the usual supersymmetry). 
Models of this type possess no superconformal invariance (and Weyl covariance) and 
therefore allow no transition to Minkowski space. We intend to explore them in the 
future. 

For completeness, we finally quote general expressions for component Lagrangian 
densities belonging to scalar and vector OSp( 1,4)-multiplets: 

2 1 ( x )  = a4(x)(F(x)  +3mA(x)),  (4.23) 

2 I I ( x )  = a4(x)(D(x)  + 12m2A(x) + 12mF(x)). (4.24) 

2I and ZII have positive parity and change by a divergence under OSp(l,4)-trans- 
formations. 

5. Conclusion 

In this paper we have described the superfield approach to supersymmetry in anti-de 
Sitter space and constructed the simple linear globally OSp( 1,4)-invariant models. The 
most intriguing possibility provided by OSp( 1,4)-supersymmetry is, in our opinion, a 
natural emergence of spontaneous breakdown of P- and CP-parities with the breaking 
parameter related to radius of anti-de Sitter space. It may be expected that this 
phenomenon we have revealed in the simplest OSp( 1,4)-invariant model will be 
retained in more complicated theories including those with local OSp( 1,4)-symmetry. 
We also hope that the methods elaborated here can be generalised to cover the case of 
OSp(N,4)-supersymmetry. The construction and study of models with global 
OSp(N,Q)-symmetry is an interesting and urgent task since such models describe the 
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‘flat’ limit of O(N)-extended supergravity, a self-contained superfield formulation of 
which is as yet unknown. 

Our approach is based on the consistent application of group-theoretical methods. 
However, as has been already partly explained in the text, all the relevant relations 
could in principle be obtained by a limiting procedure from more general local theories. 
For instance, the basic elements of 0(2,3)-formalism constructed in § 2.2 can be 
deduced in a different manner, by noting that the space 0(2,3) /0(1,3)  is a particular 
solution of Einstein’s equations with a negative cosmological term and substituting the 
relevant background metric into general relativity formulae. Likewise, the superspace 
OSp(1,4)/0(1,3) (as well as OSp(l,4)/S- and OSp(l,4)/S+) is expected to be a 
particular solution of equations of superfield supergravity (e.g. in the Wess-Zumino 
(1977, 1978), Ogievetsky-Sokatchev (1977, 1978a, b) or Siegel-Gates (1979) formu- 
lations). Therefore, all relations of OSp( 1,4)-covariant formalism should result from 
general formulae of a self-contained superfield supergravity on inserting the cor- 
responding particular values of gauge superfields. To verify this, we might proceed, say, 
from the explicit form of the OSp(l,4)-solution for the Ogievetsky-Sokatchev axial 
superfield found in § 3.3. But, as a closed formulation of OSp(1,4)-supergravity (as well 
as of a conformal one) in terms of the axial superfield (an invariant action, superfield 
equations of motion etc.) has not been constructed for the time being, it is simpler to 
work within component supergravity (Stelle and West 1978, Ferrara and Van 
Nieuwenhuizen 1978b, Ferrara et a1 1978) which seems to be equivalent to a certain 
gauge of the complete superfield theory. A particular set of gauge fields of component 
supergravity related to the superspace OSp(1,4)/0(1,3) includes (in our notation) the 
0(2,3)-de Sitter solution for the vierbein e: = 8 z a ( x )  and the constant solution for the 
auxiliary field S = 3J2m (all other gauge fields, *,, A,, P, take zero values). Inserting 
this set for example in the general transformation law for a scalar multiplet of local 
supersymmetry (Ferrara and Van Niewenhuizen 1978a) with the restriction to 
OSp( 1,4)-transformations only, one reproduces the transformation law (3.12). 
Analogously, starting from general couplings of a scalar multiplet with supergravity 
(Cremmer et a1 1979), it is possible to regain the action considered in 8 4.1. The 
advantage of the approach we have developed is that it allows one to deduce all the 
relations of OSp(l,4)-supersymmetry on the basis of the OSp(1,4)-superalgebra (2.1) 
alone and provides a deep understanding of the group structure of this important 
second global limit of local supersymmetry. Moreover, it may serve as a useful guide in 
constructing a closed superfield formulation of OSp( 1,4)-supergravity. 
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Appendix 1. OSp(l,4)-generators in nonsymmetric parametrisation 

Taking into account that the left- and right-handed splitting bases (3.13+), (3.13-) are 
related through involution, it is sufficient to know expressions for generators in one of 
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them, say in the basis (3.13+): 

M,, =i(xbab-xt;ab)+~e"a, ,  a/ae"++z;, 

+(1 +;m#-eL)A(xL)QS- +bimA(xL)(a,, + 4 m ~ ~ y , ) B ~ M ~ - ~ " ,  

Q = -a-'(xL)A(xL)yF"eLab+iA(xL)[l -$m#-BL(l -3imxiy")] a l a # -  

a 2 L v  s m2 
s t ; + m  x,x ab--xbe"at;-+m x M,;, 

2 L L u )  2 de" 
R, = i  

Here 
MS- =?_-R ," 277 ~ c r v a / a l ? R + J I I Y .  
QS- = i ( l  -$mGRTR) d/a7jR+~imaI*YTRJ,Y, 

are generators of the supergroup S- realised in the coset space S-/0(1,3). 

( A l .  1) 

(A1.2) 

(A1.3) 

(A1.4) 

(A1.5) 

Appendix 2. Irreducible spaces of the supergroups S- and S, 

In 9 3.3 we have remarked that linear representationsof the supergroup OSp(1,4) in the 
parametrisations (3.13,) and (3.13-) can be regarded as induced in invariant spaces of 
its supersubgroups S-, S, respectively (with 0(1,3) as the structure group). In other 
words, given, for example, a space closed under the action of S-t: 

(A2.1) 

(where k is the external Lorentz index), one immediately arrives at the space invariant 
under the whole supergroup OSp( 1,4) (and hence carrying its linear representation), 
simply by replacing constant coefficients in (A2.1) by functions over the homogeneous 
space OSp(l,4)/S-: 

(A2.2) 

So, the problem of implementing all inequivalent linear representations of OSp(1,4) in 
the left-handed basis (3.13,) reduces to finding all inequivalent irreducible invariant 
spaces of the supergroup S- of the type (A2.1) (the analogous statement, with the 
change S- -+ S+, holds also for the right-handed basis). Henceforth, we restrict our 
consideration to the case of S-, keeping in mind that invariant spaces of S, can be 
obtained from those of S- by involution (just as S+ itself Gan be obtained from S-), 

To obtain all the irreducible §--invariant spaces of the type (A2.1) it is sufficient to 
find the spectrum of two Casimir operators of S-: 

- R  R 
@ k ( T R ) = P k + f l R N k + T  77 B k  

pk, Nk, BI, +Pk(XL, eL), N k ( X L y  e"), B k ( X L ,  e"). 

21E ILVP~MS-MS-  
,U p h ,  (A2*3) cl = M S - M S - I J ~  - ( 1 / m ) 0'- QS-, c2 = MZ;MS-&'" +I' F ,  

where ME;, QS- are given by (A1.4) and (A1.5). Inserting in (A2.3) the explicit forms 
for the generators and using (3.19), we obtain: 

(e*):=(kl+k*): (A2.4) 

where (6y6:): = (&:p)Z;r($?,)k and kl, k2 are purely matrix parts of the Casimir 
operators of the Lorentz group: 

(A2.5) 

R " R  I (el): = ( l / m ) ( 6 + 9 +  ) k +  (RI):, 

21 = J, J,", k 2 - 1 8  - ~ I E ~ ~ ~ ~ J , , , J ~ ~ .  

t We apply here the terms 'invariant space' and 'superfield' on an equal footing. 
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We suppose that external indices of the superfields (A2.1) are rotated by the finite- 
dimensional irreducible representations of the Lorentz group D(p3q) ,  where p and q are 
positive integers and half-integers. For such representations the spectrum of the 
operators (A2.5) has the form 

R ( P . 4 )  1 = 4 p ( p + 1 ) + 4 q ( q + l ) ,  R;Pd = 4p(p+1)-4q(q+1) .  (A2.6) 

Now, the use of the simple identity for the covariant derivative 6?, 

yields the spectrum of the operator el -kl: 
(el -R,)gp’= 1 * (1 +2q) .  (A2.7) 

Finally, the total spectrum of the operators el and e2 on superfields (A2.1) is given by 

(A2.8) 

It is seen that the eigenvalue of e2 is uniquely determined by the superfield external 
index, k .  At the same time, to each fixed q there correspond two different eigenvalues 
of el distinguished by signs (+, -). Consequently, each superfield (A2.1) with the fixed 
Lorentz index (i.e. p and q fixed) contains two irreducible inequivalent subspaces of the 
supergroup S - .  The normalised projection operators which single out these subspaces 
are censtructed in a standard manner: 

e.:,,‘’ = 8p(p + I). p P 4 )  - 
I ( & )  - 4p(p + 1) + 4q(q + 1) + 1 * (1 + 2q), 

nI!p.4’= el __ 

(pv7) + p J . 4 )  = 1 r I ( P d p 4 )  = l - p W ) r I ( P d ? )  = 0) 

&?$I+” -[I F (1 + 2q)lm 
p P . 4 )  - e ( P . 4 )  = *-- 

I(*) 2m( l+2q)  
(A2.9) 

With the help of these operators the irreducible parts of a superfield @ k ( T R )  are 

7 i  - 

m[lT(1+2q)]Pk+4& P: = T 
2m( l+2q)  

and Y* are the operators projecting out of N a k  Lorentz irreducible 

l - iys  1 
y*=*---  [1*(1+2q)+ia’””J,,]. 

2 2(1+2q) 

(A2.10) 

(A2.11) 

pieces: 

(A2.12) 

From (A2.10) and (A2.12) it follows that the qR-independent invariant spaces exist 
only for the minus sign in (A2.10). Indeed, only in this case may we nullify the 
coefficient for ijRqR (by putting q = 0 there). For the representations D(p30) the 
generators J,, contain the projector i(1 +iys); therefore, due to the trivial algebraic 
property [$(I - iys)awY]![i(l + iys)aI1.y]fiy = 0, the component (Y-N),k is zero automa- 
tically. Analogously, for the supergroup S ,  the TL-independent invariant functions 
exist provided their external indices belong to the representations D(o,q’ of the Lorentz 
group. These results explain why OSp(1,4) has no left-handed chiral superfields with 
q # 0 and right-handed chiral ones with p # 0 (see 0 3.3). The projection operator 
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which singles out the qR-independent invariant spaces of supergroup S- has the very 
simple form 

III'P,~' = (2m -4y$,R)/2m. (A2.13) 

As an example, we list here the simplest irreducible spaces of the supergroup S-. 
(a) Scalar superfields ( p  = q = 0) 

6-(77R)=p++jjRN+_fmjjR77Rp+ 
ei0.0' = 

I(-)  - 0, 6)-(qR) = P-. 

(A2.14) 

(A2.15) 

The boson components of all these superfields have the structure S + iP, V, + iA,, 
N,, +iN:v, where S ,  P, V,, A,, N,, and NE,, are, respectively, scalar, pseudoscalar, 
vector, axial vector, antisymmetric tensor and its dual, all real. 

Note that for p fixed (hence, e2 fixed) there always exist two different values of q to 
which the same eigenvalue of the Casimir operator el corresponds. These q are shifted 
by $. By the Schur lemma two such representations of the supergroup S- are equivalent. 
Thus, the scalar superfield 6-(qR) from the above set is equivalent to the spinor one 
6 ; ( ~ ~ ) ;  this may easily be verified by acting on 6-(qR) by the covariant derivative 
$?(P ' -N- ,  N,' - P i ) .  Analogously, one may be convinced that the spinor 
superfield &k+(qR) is equivalent to the vector superfield 6)i*(qR). 

Appendix 3. Generalised Weyl transformations 

Let q 5 k ( x )  be an 0(2,3)-covariant field possessing with respect to the 0(2,3)-trans- 
lations the standard transformation properties (2.7): 

S R 4 k ( X )  =-SRX,a,4k(X)+fiuILO(h, X ) ( J , v d ( X ) ) k  

with SRX& and uWY(h ,  x) given by (2.6) and (2.8). We call the generalised Weyl 
transformations the following family of canonical transformations of the field 4 k  (x): 

(x)dk(x)* (A3.1) 

Here d+ is the dimensionality of the field 4 k ( X )  (in mass units) and the number n is 
arbitrary (not necessarily integer). It can be verified that the new field &k is transformed 
under 0(2,3)-translations by the law 

2 n  - 1 +dd 
4 k ( x ) * & k ( X ) = a  

SR&k(X) =-6RXF8,&k(X)-$(2n - 1 +d+)8,6RX,&k(X)+$iU,LY(h, X ) ( J K y & ( X ) ) k  (A3.2) 

i.e. as the Poincari-covariant field of conformal weight n, in the conformal group of 
Minkowski space (with identification R, = i (P,  - m2K,)), the canonical form of the 
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conformal transformation arising under the choice n = * (in this case the replacement 
(A3.1) is the standard Weyl transformation from anti-de Sitter to Minkowski space). 

For OSp(l,4)-covariant superfields one can define an analogue of the trans- 
formation (A3.1) which brings them into the basis where they have standard trans- 
formation properties wjth respect to the Wess-Zumino superconformal group (with 
identification Q = (1/42)(S - mT)).  For instance, in the case of scalar chiral superfields 
T*(x, 6,) this canonical replacement has the form 

T*(x,  e,) + (x, e,) = [a (x) ( l  + i m a ( x ) B i ~ , ) l ~ ~ ~ * ( x ,  J a O e , )  (A3.3) 

or, in components, 

AF ' (x )=  a2"(x)A*(x), 4 ! " ' ( x )  = a2n+1'2(x)+,(x), 

F p )  (x) = a2"+'  (x)(F,(x) + 2nmA,(x)) 
(A3.4) 

(n is the same as in (A3.1)). For the physical components (A3.4) coincides with (A3.1) 
(da = 1, d9 = 2, dF = 2). In terms of new fields the transformation law (3.12) looks like 

SA$'' = PGF), 
= i(1 f iys)[(-iyy&,Ap) +F!"')p ' -  inA!"'y"d,P'], (A3.5) 

6 ~ : '  = -i@lyva,$~'  -i(n - i )a ,@ly~$p)  

where p '=  (1/&)(1 -imxwy,)e. The law (A3.5) coincides with the transformation law 
of a scalar multiplet of weight n in the subgroup OSp(1,4) of the superconformal group 
(Wess and Zumino 1974a, b) (the continuation on the whole amount of odd supercon- 
formal transformations can be attained by the substitution p'+ e l  + ixgy,e2 in (A3 .9 ,  
el and e2 being spinor parameters connected with the generators S and T ) .  Note that 
the Lagrangian density (4.23) transforms as the F-component of the scalar multiplet of 
weight 4. 

For general superfields the structure of transformations of the type (A3.3) is much 
more complicated and for this reason we do not give them here. We mention only that 
components of the Weyl transformed general scalar OSp( 1,4)-superfield behave as if 
they comprise the vector Wess-Zumino multiplet of a certain superconformal weight 
(any desirable value of the latter can be achieved). 

Appendix 4. The derivation of the structure equations 

As a first step, we differentiate the decomposition (2.24) and antisymmetrise indepen- 
dent differentials to obtain 

d2(G-' dlG)-dl(G- '  d2G) 

= i [d~p(d l )  -d1p(d2)]R +i[d~T(dd -dl?(d~)]Q +i[d~v(dd-d1v(d2)lM 
(A4.1) 

(for brevity we have suppressed Lorentz indices). Furthe.r, the LHS of (A4.1) can be 
written as the commutator: 

[G-' dlG, G-' d2G]. (A4.2) 
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Inserting in the latter again the decomposition (2.24), making use of the (anti) 
commutator algebra (2.1) and finally comparing coefficients of OSp( 1,4)-generators in 
both sides of (A4.1), we arrive at the equations (2.31). 
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